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Riemann problems and the WAF method for solving
the two-dimensional shallow water equations
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An exact Riemann solver for the shallow water equations along with several
approximate Riemann solvers are presented. These solutions are then used locally to
help compute numerically the global solution of the general initial boundary value
problem for the shallow water equations. The numerical method used is the weighted
average flux method (WAF) proposed by the author. This is a conservative, shock
capturing high resolution Tvb method. For shallow water flows where nonlinear
effects are important or where abrupt changes (hydraulic jumps) are to be expected
the present algorithms can be useful in practice. One and two-dimensional solutions

_d
T are presented to assess both the Riemann solvers and the waF method.
N
>-*E 1. Introduction
8 == A wide variety of physical phenomena are governed by the shallow water equations.
w0 5 Some examples are tides in oceans, breaking of waves in shallow beaches, open-
T O channel flow problems such as roll waves, flood waves in rivers and surges. Also, the
~ equations can be reinterpreted and used to model flows in the atmosphere.

The shallow water equations are a set of nonlinear hyperbolic equations and are an
approximation to the full free-surface gravity flow problem with viscosity and
surface tension effects neglected. The key assumption contained in the shallow-water
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44 K. F. Toro

equations is that the vertical component of the acceleration of the water particles has
a negligible effect on the pressure, or equivalently that the pressure ig given as in
hydrostatics. The same governing equations result as the approximation of lowest
order in a perturbation procedure. This involves a formal development of all
quantities in powers of a parameter, ¢, which is the ratio of the water depth to some
other characteristic length associated with the horizontal direction.

The second approach to deriving the shallow water equations makes evident the
role played by the undisturbed water depth in determining the accuracy of the
approximation. More details can be found in Stoker (1957).

The nonlinear character of the equations means that the use of analytical
techniques to solve them can only be successful in very special circumstances.
Numerical methods must be used to obtain solutions to realistic problems of scientific
or engineering interest. But it is the hyperbolic character of the shallow water
equations that makes the mathematical and numerical problems of finding solutions
difficult.

Hyperbolic equations admit discontinuous solutions, in addition to smooth or
classical solutions. Even for the case in which the initial data is smooth everywhere,
the nonlinear character combined with the hyperbolic type of the equations can lead
to discontinuous solutions in a finite time. In the field of gas dynamics, the
discontinuities are associated with shock waves and contact surfaces. In the context
of the shallow water equations the discontinuities are associated with hydraulic
jumps and bores in water or the propagation of sharp fronts in the atmosphere.

For a large variety of flow situations one may assume that solutions remain
smooth for all times. The development and application of numerical methods for the
shallow water equations in these circumstances form an impressive body of research
work. An up-to-date survey in this area is contained in the paper by Casulli (1990).

In this paper we are concerned with numerical methods for simulating flow
situations in which discontinuities are present and are important to model. In
particular, we describe the application of the weighted average flux (waF) method to
the two-dimensional shallow water equations. This is a shock-capturing, high-
resolution conservative method that is based on solutions to local Riemann
problems. The waFr approach was presented by the author (Toro 1989«), as applied
to systems of nonlinear hyperbolic conservation laws. Applications of the method to
problems related to gas dynamics with shock waves have been very successful (Toro
1989a, 1990). We can now use the resulting experience to exploit the specific features
of the shallow water equations to formulate simple and robust numerical procedures
based on the waF principle.

The two-dimensional shallow water equations written in conservation form with
source terms are

U+ F,+ G, = S(U) (1)
¢ pu pw 0
with U=|oul|, F=|¢u®>+ip*|, G= duw . S=] goh,|. (2)
pw puw pw* +1p* goh,

In equation (1) U is the vector of ‘conserved’ variables, F(U) and G(U) are flux
vectors, S(U) is a ‘source’ term vector. Figure 1 illustrates the flow configuration that
gives rise to the model (1)—(2). Details on the derivation of the equations can be found
in Stoker (1957) and Glaister (1987). Here g is the acceleration due to gravity, A+
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Riemann problems and the war method 45

is the total depth, ¢ =g(h+%), u and w are the x and z components of velocity
respectively.

For many applications there will be additional terms in the vector S(U) to account
for Coriolis force and bottom friction. The numerical solution procedure described in
§§2-4 deals essentially with the homogeneous part of equation (1). The treatment of
the source terms is a relatively standard process via time operator splitting.
Moreover, the two-dimensional homogeneous problem is solved by using space
splitting, or method of fractional steps, whereby the two-dimensional problem is
reduced to a sequence of one-dimensional problems. Splitting procedures are
presented in §4. It is therefore sufficient to consider

U+F, =0. (3)

This homogeneous conservation law can be rewritten in integral form as
%(de—th) =0, (4)

which is more general than (3), for it admits discontinuous solutions.

This paper is organized as follows. In §2 we formulate the Riemann problem,
present an exact solver and a variety of approximate solution procedures. In §3 we
present the war numerical method and its practical implementation for the shallow
water equations. In §4 we apply the method to test problems in one and two
dimensions. Conclusions are drawn in §5.

2. The Riemann problem

The numerical technique war described in this paper uses solutions to local
Riemann problems to evolve the global solution in time. For simplicity we consider
first the Riemann problem for the purely one-dimensional case,

¢ pu
= t - . e
[ g, =00 0 e °

The Riemann problem for (5) is the initial value problem (1ve) for (5) with
piecewise constant initial data.

U, =<0,

6
Ug, x>0. ©)

U(0,x) = {

The subscripts L and R denote left and right states respectively.
It is easy to see that the system (5) is hyperbolic with real eigenvalues

e, =u—a, e =u-+a, (7)
where a=v¢=vI[gn+h)] (8)

denotes the ‘sound’ speed, or celerity.

The 1vP (5)—(6) can be solved exactly. This is possible because of the simplicity of
the initial condition (6). The solution can be represented in the xz¢-plane as shown in
figure 2. There are two waves, one travels to the left and the other to the right. They
can either be shock (bore) or rarefaction (depression) waves. Figure 3 shows all four

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1 Figure 2
y left right
wave ! wave
Tl(x,z:t)
’ X
h(x,z)
4 UL

Figure 1. Free-surface flow configuration. (z,z) is horizontal plane, y is vertical direction, A(x, z) is
depth of undisturbed water, n(z, 2,1) is free surface disturbance.

Figure 2. Wave pattern of solution of the Riemann problem for the one-dimensional shallow-water
equations.

rarefaction ;¢ shock shthon rarefaction trarefaction shock ! shock
0 X 0 x 0 (

X 0 X

Figure 3. All possible wave configurations in the solution of the Riemann problem for the
one-dimensional shallow-water equations.

possible wave patterns. The waves separate three constant states, namely U}, (data)
to the left of the left wave, Uy (data) to the right of the right wave and a new constant
state U* valid in the region between the left and right waves. We denote this region
by the star region. The solution through rarefaction waves, at any given time ¢*,
varies continuously with x, while through shock waves it jumps discontinuously.

(@) An exact Riemann solver

The main step in solving the Riemann problem is to find the constant state U* in
the star region (see figure 2). This depends on appropriate relations through the left
and right waves connecting U* to the data states U, and Uy respectively. Such
relations depend on the type of waves present, but this is not known a priori. It could
be any of the four patterns shown in figure 3. The determination of the wave type
is part of the solution procedure, which is iterative.

Marshall & Mendez (1981) appear to be the first to have solved the Riemann
problem for the shallow water exactly. Their method is based on the Godunov’s
iteration procedure, which is known to be very inefficient due to its low rate of
convergence.

The exact Riemann solver to be described next follows the ideas behind the
Riemann solver for covolume gases presented in Toro (1989¢). Essentially, we derive
a single (nonlinear) algebraic equation for ¢*, the value of ¢ in the star region,

namely
S(@*) = fL(@*, dr) +[r(d*, dg) +ug —uy, = 0. 9)

Our solution procedure is, computationally, very efficient. Here u,; and uy are
velocity on left and right states respectively (data); f; and f; are functions

Phil. Trans. R. Soc. Lond. A (1992)
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Riemann problems and the war method 47
(@) = S, ® 0
up | u* v o=u =S | vi=ut=§

Figure 4. Transformation to a steady frame of reference moving with the shock speed.

connecting the left and right states respectively, to the star region. In what follows
we shall derive expressions for the functions f; and fy. As already mentioned, they
depend on the type of waves present. We consider each case separately.

(1) A4 left shock wave

Here we suppose that the left wave is a shock wave travelling with velocity ;. It

is convenient to transform coordinates to a stationary frame as shown in figure 4,
where

v =uL—8S, vF=wu*-8,. (10)

In this frame the conservation laws (5) give
Pro, = p*v* =M, (L1)
P 0L TIPL = PF0*E 45" (12)
The convenience of transforming to a stationary frame is that the jump conditions
are easier to apply, without having to solve for §y, explicitly, which in any case is not

needed, in solving for ¢*.
Equation (12) can be rewritten as

(B vn) v, — (P*0¥*) v* = 3(p** — B1),
which after inserting M, from (11) gives
My, =—3(@*—¢1)/(v*—vy) = —3$** —pL)/ (u* —uy). (13)

From equation (11) again we have v* =M, /¢* and v, = M, /P, and so (13), after
some manipulations, becomes

My, = L™ (b + 9% (14)
From equation (13) we obtain

w* =y —3(* = pi) /M,
or w* = u,—fL(¢* ¢p), (15)
where Fuld* u) = (6% —b) He* + pu)/p*bul (16)
We have obtained the function f;, for the case in which the left wave is a shock wave.

(it) A right shock wave

We proceed in an analogous way as in the case of a left shock. Suppose the right
shock travels with speed Sg. In the stationary frame of reference we define

¥ =u*—S8g, vy =ug—~Sy (17)

Phil. Trans. R. Soc. Lond. A (1992)
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48 E.F. Toro
so that the conservation equations (5) become
P*Fv* = Ppvg = —My, (18)
PF R+ 39* = P vk + ik (19)
Equations (17)—(19) give
My = 35($*° — ¢R)/ (u* —uy) = 5($** — $R)/ (v* —vy), (20)
or My = li¢* $r(g* + dr)l (21)

From equation (20) we obtain
u* = up +3(¢**—Pk) /My,
or w* = up +fr(P*, dr), (22)

where fr(@* dr) = (P*—dr) [%(¢*+¢R)/(¢*¢R)]% (23)

This is the function fg for the case of a right shock wave. Note that by subtracting
(15) from (22) »* is eliminated leaving a single algebraic equation of the form (9) for
the unknown ¢*.

(iii) Rarefaction waves
The case of rarefaction waves is most easily dealt with by rewriting equations (5)
in non-conservative form and noting that the Riemann invariants (Stoker 1957) are
uw—2a = I;, along curves dz/dt=u—a, (24)
u+2a =1y along curves dx/df =wu+a, (25)
where I, and [; are constant.
If the left wave is a rarefaction wave we can connect the left state U}, to the

unknown state U * across the left wave by transversing it with a wave of the family
dx/dt = u+a, along which the right Riemann invariant Iy in (25) is constant, i.e.

uy,+2a,, = u¥+2a*.

Hence w* = uy—=fi($*, b1), (26)
Ju=2vVP* =) (27)
Similarly for a right rarefaction wave we have
w* = ug +fr($% Pr) (28)
with Jr =2V $* =V ¢g). (29)

The equation (9) for the unknown ¢* is now completely determined.

(b) Solution to the Riemann problem

For convenience we summarize the expressions for f;, and fy;, namely

2(v ¢*—+/¢yp), left rarefaction, ¢* < ¢,
= 30
PTG g VI g (Bl Teftshock, gt gy, )
[2(\/¢*—\/¢R), right rarefaction, ¢* < ¢y, 31

To =\ (3% )V IS+ $r)/(6* )], right shock, % > g

Phil. Trans. R. Soc. Lond. A (1992)
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Riemann problems and the war method 49

The choice of the particular form of fi,fr depends physically on the ratios ¢*/¢,,
$*/¢g. It can be shown that f(¢) as given by (9) with f; and fg chosen as in (30), (31)
is a monotone function and has therefore a unique solution for physically admissible
data.

The nonlinear equation (9) can thus be solved using a Newton—-Raphson iteration
procedure

¢(>l;c) = ¢Zklc—l)+o-(lc—1)> (32)
where Tay = S/ firy (33)

with & denoting the iteration number, and f* = df/d¢* = f] + [y denoting the first
derivative of f with respect to ¢*. From (30)—(31) f1, and f5 are found to be

(1/v¢*, left rarefaction,
fi= Dy —Hp*—p1)/Dy, ¢, left shock,
( 1/4/¢*, right rarefaction,

t ]DR_%(¢* —¢r)/Dr¢**, right shock,

where Dy, =V [3(¢*+¢1)/ (9* b)), Dy = VHP*+ )/ (D% Pr)]. (36)

The iteration (32) requires an initial guess ¢, for ¢*. One could take ¢, = Hpy,+ dy)
for instance, which although simple is not very accurate. The initial guess

‘l%) = [%(\/¢L+\/¢R)+i(uL_uR)]2 (37)

is found to be very accurate for most pairs of states (U, Uy) in a typical flow field.
However, it is costly to compute, but for some tests we have carried out there are net
gains in using it.

The iteration procedure is stopped whenever

0 =% = Bl-ul/Bl <.

where 7 is a chosen tolerance. For most purposes 7 = 107 is good enough. Once ¢*
is known, 4* can be computed from (26) or (28) or a combination of the two as

u¥ = §(ug +uy) +3(fx —fL)- (38)

(34)

(35)

(1) Shock wave speeds

The speed 8y, for a left shock can be calculated once ¢* is known. From equation
(11) we have ¢ v, = M, where M, given by equation (14), is now known. From
equation (10) vy, = u, — Sy, and so ¢ (u, —8) = M, from which the speed Sy, follows
as

Sy = uy,—M/$y, (39)
Similar arguments give the speed Sy for a right shock as
Sg = ug+Mg/Pg. (40)

(ii) Solution inside rarefaction fans

Suppose the left wave is a rarefaction wave (see figure 5). The head of the fan is
given by the ray dx/dt = u;,—a,, and the tail is given by the ray dx/dt = u* —a*.
Suppose we wish to find the solution inside the fan at the point (&, {) say. Denote by

Phil. Trans. R. Soc. Lond. A (1992)
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50 E.F. Toro

i) (ii) (iii)

|
|
i
|
|
X
Figure 5. Determination of the solution inside a rarefaction fan. (i) da/dt = uy—a,;
(i) da/dt = &/f; (iii) da/dt = u* —a*.

u and a the unknown values for the particle speed and the celerity. Consider the ray
passing through (0,0) and (#,?) for which dx/dt = u—a. Then

i)l =u—a. (41)

Also, using the right Riemann invariant (25) across the left rarefaction we obtain

u+2a = uy,+2a,, (42)

the solution of (41)—(42) for  and «a is
w = YNuy, +2a, +22/1), (43)
a = Yy +2a, —£/1). (44)

For the case of a right rarefaction the head is given by dx/dt = ugy + ay and the tail
by dx/dt = u*+a*. The solution at a point (&,¢) inside the fan is found to be

I

u = Yug —2ag +24/1), (45)
a =Y —ug+2ag+&/0). (46)
The exact solution of the Riemann problem for the one-dimensional shallow water

equations (5) is now complete.

(iii) The Riemann problem for the split two-dimensional case

When extending the war method to two space dimensions one considers the
associated Riemann problem for the equations in one direction only, say x. Then the

equations to consider are
¢ pu
du | +| pu® +3p2 | =0. (47)
Pw, duw
This system is hyperbolic and has three distinct eigenvalues
eL=u—a, e =1u, e;=1uta. (48)

It is not difficult to see that the third equation involving the z—component of
velocity w is decoupled from the previous two equations; w is passively advected by
the speed u. The variables  and ¢ are constant (as in one-dimensional case) in the
star region between the acoustic waves ¢; =u—a and e, = w+a, while w only

Phil. Trans. R. Soc. Lond. A (1992)
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Riemann problems and the war method 51

changes (discontinuously) across dxz/d¢ = e, = w, which is a linearly degenerate field.
So the exact solution of the Riemann problem for (47) with data (¢, uy,w;) and
(g, Uy, wg) is exactly the same as in the one-dimensional case, for the unknowns ¢*
and u*, with the addition
wy, if  x/t <u¥,
(@, 1) = { (49)
wg, otherwise.

This particularly simple structure of the solution of the Riemann problem associated
with the two-dimensional shallow water equations will be exploited when searching
for approximations.

(¢) Approximate Riemann solvers

Although the exact Riemann solver presented in the previous section is very
cfficient, the search for approximate Riemann solvers is still justified. One would like
to have to perform fewer and simpler operations. Perhaps more importantly, it is
desirable to eliminate altogether the iteration procedure contained in the exact
solver. This can result in significant additional computing savings in vector
machines. The great advantage of using exact solvers is the added robustness of the
codes under severe conditions. In the field of gas dynamics all the approximate
Riemann solvers known to the author have limitations under certain circumstances.
For the shallow water equations, however, it appears as if certain approximations
can be very robust and simple to compute.

We present several approximate Riemann solvers.

(i) A two rarefaction approximate solver (TR)

This approximation results from assuming a priori that the two ‘acoustic’ waves
present in the solution of the Riemann problem are both rarefaction waves (see
figures 2 and 3). Of course this assumption may not be true, but it is remarkable the
resulting approximate solution is quite accurate (Osher & Solomon 1982). An
immediate consequence is that the functions f;, and fg in equation (9) are those
corresponding to rarefaction waves. Thus f(¢*) in equation (9) becomes

20V ¥ =) +2(V F =V pr) tug —uy, =0

from which the solution for ¢* follows directly as

¢* = [3(V P+ v ¢r) —iug —ug)]*. (50)
The solution for u* follows from (38), as
w* = j(uy,+ug)+vVoL—V Pr. (51)

For the case of the split two-dimensional Riemann problem for equations (47) one
only needs to add the solution for w as given by equation (49).

The TR approximation is exact for the case of two rarefaction waves in the
Riemann problem, as well as for combinations of rarefactions and ‘Mach’ waves
(waves of zero strength). It is also found to be quite accurate even for cases involving
shock waves, as it will be seen later. More importantly, for a typical, one-dimensional
calculation say, we may have to solve 100 Riemann problems at each time step. The
most likely event is that only a couple of those Riemann problems may contain shock
waves. The rest of the flow field can be accurately modelled by the two-rarefaction
approximation.

Phil. Trans. R. Soc. Lond. A (1992)
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(it) Choice of wave speeds

The war method, to be described in §3, requires the wave speeds and the states
separated by the waves. In the TR approximation the acoustic waves are assumed to
be rarefactions and thus there is ambiguity when having to choose the representative
wave speeds. We find that

A, =min {u;,—a;,, wu*—a*},
/\2 = 'LL*, (52)
Ay = max {uy +ag, w*+a*},

is the best choice one can make from the information available in the TR
approximation.

(i1) The two-shock approximation (1s)

This approximation results from assuming (which again may not be true) that the
acoustic waves in the Riemann problem are both shock waves. The functions f; and
fr In equation (9) are those corresponding to shocks in equations (30)-(31) and thus
we obtain

(@*—d1) VIs(@*+ @)/ ¥ hrl+ (p* —dy) \/l%(¢*+¢R)/¢*¢R]+u1{_uL =0. (53)

Unfortunately, this is still a nonlinear equation for ¢* and I have not been able to
find a closed-form solution for it. The advantage of using the TS approximation
instead of the exact solver is that the computer logic associated with the type of
waves is not present.

A possible further approximation to the Ts approximation can be obtained by
expanding (53) in a Taylor series about a point ¢ and retaining first-order terms.
The point ¢ can be taken from the Ts approximation (50). We find that we still need
to solve a quadratic equation with coefficients involving many operations. We do not
regard this approach as useful, although the solution for ¢* is then direct.

Once ¢* is obtained from the solution of (53) u* follows from equation (38) as

u* = §(ug +uy) +3(fr—SL), (64)

where, for consistency with the Ts approximation, one takes f, and fz from the shock

The wave speeds A;, A,, A, can be taken as those given by (52). Alternatively, one
can test the ratios ¢*/¢,, ¢*/¢y. If either of these is greater than unity one could
choose the exact shock-wave speeds Sy, or Sy, given by (39)-(40), for A, or A,.

For the two-dimensional split case, again we choose A, = w* and w(x, t) as given by
(49).

(iv) Roe-type approximations

Glaister (1987) derived a Roe-type approximation for the shallow water equations.
There are two possible interpretations for this approximation. The first, is the
original concept, due to Roe (1981). We denote this interpretation by RS1. This is the
interpretation to be used in Roe’s method. The second interpretation is new and can
be used in the context of any Godunov-type methods, including war. We denote this
approximation by RS2.

Phil. Trans. R. Soc. Lond. A (1992)
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Riemann problems and the war method 53

(v) First interpretation of Roe’s solver (RS1)

For the purpose of using Roe’s method one must obtain the Roe approximation to
the solution of the Riemann problem. This makes use of the fact that for a linear
hyperbolic system of the form (3) the flux difference AF = Fy —F| between a left (L)
and right (R) states can be written as

N
AF = X o, A1y, (55)
k=1
where N is the number of waves in the Riemann problem with data U and Uy, «; are
the wave strengths, A, are the wave speeds or eigenvalues of the jacobian matrix
J = 0F/dU and r, are the right eigenvectors corresponding to the eigenvalues A,.
Note that (55) is in general a vector equation.

For linear systems with constant coefficients the jacobian matrix J is constant.
Roe’s approximation is based on the assumption that the matrix J is still constant
for nonlinear systems. It is then a question of constructing appropriate averaged
values [ in terms of the data states U, and Uy such that J=J(O) = JU,, U).

laister (1987) provided the Roe- averaged values for the two-dimensional shallow
water equations. We simply state the result here.

1= (v $rur+Vdrur)/(VIL+V r), (56a)
W= (V¢LwL+\/¢RwR)/(\/¢L+\/¢R)> (560)
VLt or). (56¢)
) qi V(BLgr) (56)
AA=d—a, A,=14, /\3=d+d, (56¢€)
3, = 3Ap—4pAu/a,

= ngAw (56f)

~3 = %A¢+§q§Au/d,

where A¢ = ¢ — P, Au = up —uy, Aw = wg —wy,.
The right eigenvectors are

1 0 17
1’1=|:17L—d , @:[0], f3=[a+d .
W 1 W

The Roe-type solution (56) is valid for the x-split of the two-dimensional shallow
water equations (47). For the z-sweep one interchanges the roles of the velocity
components » and w.

It is worth mentioning that the averages (56), in addition to (55), also satisfy

—

569)

N
AU =Ug—Ug = X &, 7, (57)
k=1
which means that the jump in states across the wave k is given by &, 7, the product
of the wave strength &, and the appropriate component of the right eigenvector. The
same interpretation applies to the flux difference AF in (55). This is split into flux
differences across all the waves present in the Riemann problem. The jump in flux
across wave k is a; A, 7.

Phil. Trans. R. Soc. Lond. A (1992)
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54 E. F. Toro

It should be mentioned here that the Roe’s Riemann solver as stated can lead to
entropy violating solutions, but entropy fixes can easily be implemented.
Roe’s numerical method makes use of (55)—(57). See Glaister (1987) for details.

(vi) Second interpretation of Roe’s solver (RS2)

The information contained in (56) can be used directly to provide an approximate
solution to the Riemann problem in the sense of §2a, namely, an approximation to the
star state U* and the wave speeds.

Equation (57) applied to the two-dimensional equations (47) gives

Pr—¢y=3d,, Pr—P* =a,,
BFu— oy, = 3,0 ), Py g — GFut = (i +a).
It follows that
¢* = %(¢L+¢R+O~Cl_&3)v (58)
P vyt Pr g + &y (0 — ) — (0 +d)
¢L+¢R+&1_&3

One could also obtain values for wf and w} using the Roe averages but this solution
would be incorrect. By inspecting (56f) and (56¢) one can see that w changes across
the acoustic waves by &, @ and &, @ respectively. In the exact solution w only changes
across the contact waves. This defect in the Roe approximation can lead to some
numerical problems. The same remark applies to the Euler equations in two and
three dimensions. The problem becomes apparent in shear waves. I am currently
investigating this issue in detail

For a method that is independent of the details of any particular Riemann
approximation, such as WAF, one can easily modify the Roe solution for the passive
velocity w. We simply set w = w;, to the left of the wave da/dt = u* and w = wy
otherwise as in the exact solution (49).

For the wave speeds in this interpretation of the Roe solver we take A,, A, and A,
as given by (52).

u* =

(vil) HLL-type approximations

Harten et al. (1983) suggested some very simple types of approximations to the
solution of Riemann problems. We denote this approach by urL. They begin by
considering estimates for bounds on the smallest and largest signal velocities in the
solution of the Riemann problem.

Suppose these estimates [/ and Ey say, are available and that £, < 0 and By > 0
(see figure 6). Consider first the one-dimensional case of equation (5) in the integral
form (4). Evaluation of (4) round the rectangle ABCD in figure 6 gives

|AO|U,, +|0B|Uy — |CD|U* — |BC|Fy + |DA|F, = 0.

But the distances are related to the time |BC| = |DA| via the wave speeds Ky, and Ky
as follows
|AO| = —|BC|E,,|0B| = |BC|E}.

Also |AB| = |CD| = |AO| +|0B| = |BO|(Ey —Ey),
from which it follows that

|BO|(fig — B 1) U* = |BC|(By Uy — By, U, — F + Fy)
Phil. Trans. R. Soc. Lond. A (1992)
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) t

€ (i)

DX~~~ 7C
|
| |

u 1 Ug

I 1
A B

Figure 6. HLL solution of the Riemann problem. £, and E are estimates for the smallest and
largest signal velocities. (i) de/dt = K ; (ii) da/dt = Ey.

and so
U* = (ERUR-ELUL+FL—FR)/(ER_EL)' (60)
One could also compute the star fluxes directly as
B = (ERFL_EL]'}L+ELER(UR_UL))/(ER—EL)- (61)

There is freedom in choosing the estimates £, and Ey. Davis (1988) proposed various
alternatives. Here we suggest

(62)

= = mi _ * %

B, = A =min{u;—ay, uip—afg} }
=) = * *

Ey = A, = max{ug —ag, uwig+aig),

where u¥; and a¥y are the values given by the two-rarefaction approximation
(60)—(51).

For the two-dimensional split equations (68) the HLL solver is extended by setting
Ay = By in (62) and adding

Ay = u¥,

wy, if xft <u*, (63)

wy if x/t > u*.

w(x, t) = {

The HLL-type approximation (60) and (62) is very simple and robust. For the shallow
water equations this type of approximation is bound to be more successful than for
the Euler equations, for which the neglecting of the contact wave leads to excessive
smearing of contact surfaces. For the shallow water equations the acknowledgement
of only two waves is correct, provided the solution for the passive velocity w is then
taken as in (63), for the two-dimensional case.

For fully subcritical (B, Ey < 0) and fully supercritical (£, By > 0) one can still
carry out the integration (4). The result is, in either case, a pair of nonlinear algebraic
equations for u* and ¢*. Instead we propose the following procedure : acknowledge
a single wave of speed A and take the solution

U, if x/t<A,
Ul t) = (64)
Ue, if x/t> A,

min{fy, By}, if Hy, By <0,
max{E, By}, if B, Ey=>0.

with A= (65)

Note that (64)—(65) could be applied to all conserved variables, as well as the passive
velocity.

Phil. Trans. R. Soc. Lond. A (1992)
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] Figure 8
Figure 7 .
" (i) t @iD
D U;
- . 2\ A 1=AT
' : | !
;F;_; i E+§E : l
e T ar A— —4'—-~~—-t=1/2AT
| ! i | !
I ! : |
oA B Y, 1 | (=0
no —A) 0 ‘
_@Uz ~J Ax /2 Ax,, /2
Ax

Figure 7. Computational grid in the zt-plane. The computing cell 4 has dimensions Az by At.

Figure 8. Integration path for the war-flux evaluation. The illustration is for a 2 x 2 system such
as the one-dimensional shallow water equations. (i) de/dt = A,; (ii) da/dt =

3. The weighted average flux method (WAF)

Here we describe a conservative shock capturing method that is applicable to the
two-dimensional shallow water equations (1) and uses, locally, the solution of the
relevant Riemann problem. We call the method war, which stands for weighted
average flux. Further details can be found in Toro (1989, b, 1990).

The method is directly applicable to hyperbolic conservation laws of the form (4),
or (5). Consider a computational grid in the xi-plane as shown in figure 7. Application
of the integral form of the conservation law (5) to the rectangle ABCD in figure 7
gives the explicit conservative method

Uptt = Ur + (At/A) [y —F ). (66)

(@) Formulations of the war method

The waF method uses an intercell flux £, that is obtained from an integral
average of the flux function F(U) across the oompletc wave structure of the local
Riemann problem with piece-wise constant data (U}, U}, ;). That is to say

5 1 0 N 1 D4y X
Fi= A J F(U*) da+ J F(U%) de, (67)
0

1
i J 1Az, Az,

where U* = U*(x /At U?, UZ.,) is the solution of the Riemann problem with data
U}, U}, at the half-time level. The Riemann problem is centred at x = 0 and its
solution depends on the similarity variable z/¢. In (67) we are allowing for irregular
grids; Ax, is the spacing for the computing cell ¢. Figure 8 illustrates the war-like
evaluation for a 2 x 2 hyperbolic system, such as the one-dimensional shallow water
equations (5).

The integration in (67) could be done exactly, but that would be costly and
unnecessary. If we assume that all waves are represented by single rays through the
origin, then (67) becomes a summation, namely

N+1

Ry = £ WRE

i+ (68)
where, for generality, N represents the number of waves in the Riemann problem. For
the one-dimensional shallow water equations N = 2. The coefficient W, in (68)
represents the geometric extent of the region k in which the flux function F(U*) takes

Phil. Trans. R. Soc. Lond. A (1992)
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Riemann problems and the war method 57

on the constant value F{). Effectively, W, is a weight and can be easily seen to be
given by

We=3vp—vi), vo=—1, vy, =+1 (69)
Note that W, = 0 for all k£ and 2 W, = 1.

The quantity v, in (69) is the Courant number associated with the wave £, of speed
A, in the solution of the local Riemann problem. That is

v, = At A,/ Ax. (70)
The war flux is an extension of the Godunov flux, which is defined by
w0r = FUS0, UF, Uy (71)

i.e. U* is evaluated along the ray x/t = 0. Both fluxes use the same Riemann
problem, but ‘;jr"%) gives a first-order accurate method, while ’zﬁ;‘%" gives a second-order
accurate method.

Expansion of formulae (68) and (69) gives a more revealing expression for WAr
flux, namely

N
= W+ Fry)—3 S v AP, (72)
k=1
with AR, = FED - F) (73)

representing the flux jump across the wave k. Equations (72), (73) reveal the wave
splitting character of the intercell flux.

Instead of obtaining an intercell averaged flux one could obtain an averaged state
Vigy as

(S

N
VH% =3V + Vi) =3 X v AV (74)
k=1

i+3

and then set

Fi+% = F(Vz’+§)~ (75)
For linear problems (72) and (75) are identical. For nonlinear problems they formally
differ, but numerical results are virtually identical. Formula (75) may, in some cases,
be computationally cheaper, but this will depend on the way the Riemann problem
solution is made available by the solver. The variable V in (74) can be the
conservative variable U or some other convenient choice, such as the primitive
variables. If V is the vector of conserved variables then the war method is analogous
to the Richtymer—-Morton, or two-step Lax—Wendroff, method (Richtmyer & Morton
1967).
(b) Sonic flow problem

In deriving the approximate expression (72), or (74) and (75), for the war intercell
flux, it was assumed that the waves in the solution of the Riemann problem were
single rays. For contacts and shocks this assumption is correct, but it is not for
rarefaction waves, which have a fan-like configuration. This simplification only
appears to cause difficulties when the rarefaction fan is centred around the ¢-axis,
i.e. when for one of the characteristic rays of the rarefaction wave one has dx/dt =
u—a =0 (for a left rarefaction) or dx/dt =u+a =0 (for a right rarefaction).
In such circumstances one speaks of locally sonic flow.

The two possible cases for the one-dimensional shallow water equations are
illustrated in figure 9.

Phil. Trans. R. Soc. Lond. A (1992)
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(b) t
(i) 0] (i)

0 0

Figure 9. Locally sonic flow. Case (¢) shows the solution of a Riemann problem where the left
wave is a rarefaction centred around the t-axis, i.e. w = @ along the ¢ axis. (i) da/dt = u, —a, <0;
(if) da/dt =u*—a* > 0. Case (b) illustrates the sonic-flow situation for a right rarefaction.
(i) da/dt = u*+a* < 0; (ii) de/dt = uy+ay > 0.

Locally sonic flow is related to the property of entropy satisfaction for conservative
schemes. See Harten et al. (1983) for details. Entropy violating schemes can compute
‘rarefaction shocks’, which are unphysical. The war method with the exact Riemann
solver is entropy satisfying provided one replaces the U* constant state between the
acoustic waves by the point value U*(0, U, U, ,), which is the value at which the
Godunov flux is evaluated. For the shallow water equations the exact solution at
x/t = 0 is given by equations (43)—(46).

In general, it is the Riemann-problem solution that plays the crucial role. Certain
approximations, such as the Roe approximation (56), are known to be entropy
violating. Special entropy fixes are then required.

The inherent second-order accuracy of the war method leads to spurious
oscillations near shock waves or other discontinuities. The local wave structure of the
Riemann problem can be used to construct an oscillation free version of the method.

(¢) A 1vD version of wAF
Given the discrete solution {U?} at time level n the total variation of {U?} is defined

as

VU™ = XU, = U7l

i

This is essentially a measure of the oscillatory character of the solution. Many useful
difference schemes are total variation diminishing, or TvD for short. That is the total
variation diminishes with time, or

T'l'/((]n‘f‘l) < ’IYV(LTTL).
For the model linear advection equation
U+alU,=0

we can construct rigorously a TvD version of war. See Toro (1989¢) for details. For
nonlinear systems the TvD procedure is empirical, but in practice it works very well
as will be demonstrated in §4.

The principle is to amplify the wave speeds in the solution of the local Riemann
problem. The purpose is to alter the size of the weights W, while keeping the states
unaltered. This is achieved by multiplying the Courant numbers v, by an amplifying
function 4,. Thus the oscillation-free war flux (72) becomes

N
ot = ME A+ Fi) =} T 4,0, AFD, (76)

k=1
Phil. Trans. R. Soc. Lond. A (1992)
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Riemann problems and the war method 59

The amplifying function 4, = 4,(U) is a function of the flow features. Here we give
one such function

(1=2(1=v))/ vl

(L=r(X =)/ vl
A,=(1,

(=2 (1 =[v, 1)/,
L/vil,

The definition (77) for 4, is for a single wave k& with Courant number v,. We call 4,
SUPERA, in analogy with the flux limiter suPERB. The flow parameter 7, is

o

~.

DOj - -~
<
.

- DN

.

(77)

o
NINININNV
=
NCINN

=

.
(2l

i

=
.

(AQE/AQE, it v >0,

i—1

i = (78)
|aQe/aQm it v, <o,

where € is a suitable variable. For the shallow water equations we use ¢ = ¢ for the
acoustic waves and € = w for the ‘contact” wave. The notation AQ¥; mean the jump
in @ across the wave k in the Riemann problem with data (U}, U,,,). rI,zhe denominator
in (78) is always the jump through wave £ in the local Riemann problem (¢,74- 1),
whereas the numerator looks at the upstream or upwind direction to find the
appropriate jump. Since the waves in the Riemann problem generally travel in
different directions one must construct a function 4, for each wave k.

If the version (74)—(75) of waF is to be used then the oscillation-free average state
Viyy is given by

Vigr = %(Vzﬂ‘i' V?Jrl)__%

e

Ay v AV, (79)

1
+3 i+}
1

(d) The crL condition

The waF method (66) with (76), or (79), is an explicit time-marching scheme. The
stable rate of advance in time is given by the Courant condition. Here we suggest a
nonlinear ¢rL condition as proposed in Toro (1989d).

For a given cell i there is a time step Af, that is the time it takes for the right
acoustic wave of speed S from the left Rlcmann problem (i—1,%) to intersect the
left acoustic wave of speed S, i+ of the right Riemann problem (i, ¢+ 1). If the size of
the cell 7 is given by Aw;, then

Al = A,/ (k. —SEy). (80)

Then we take At, the time-step size for the scheme at the given time level, as At =
min {At;}. Due to the denominator in (80), it is best for programming purposes to take

At = A2/S |

(81)
Smax = Max {SzL+% 1——} J
A simpler, but less reliable cFL condition is
At = min {Az,/2a}'}, (82)
i

where af is the sound speed at ¢ at the data time level. This is a special case of

Phil. Trans. R. Soc. Lond. A (1992)
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solid
computational boundary
domain /
L I | 1 L
M-1 M M+1 M+2

Figure 10. Right-hand boundary. Two fictitious states M +1 and M +2 are required.

i—3
commonly used empirical formula At = CAz/S, where § is the maximum wave speed
present in the data, usually taken as S = max, {|u}|+a}. C'is an empirical coefficient
with 0 < C < 1. For shock-tube like initial data («] = 0) this condition fails and can
lead to serious stability problems at the beginning of the calculations.

(80)—(81) with Ski = u?—a?, SR, = u+al. Both (81) and (82) are better than the
it i i i i

(e) Boundary conditions

We describe two types of boundary conditions that are applicable to one-
dimensional problems.

(1) Reflective boundaries

If the presence of solid walls, fixed or moving, reflective boundary conditions must
be imposed. Consider the boundary on the right-hand side of the computational
domain, as shown in figure 10. The last two cells inside the computational domain are
M—1 and M. Two fictitious computational cells are added to the right-hand side of
the solid boundary ; these are denoted by M + 1 and M +2. For simplicity consider the
Riemann problem RP(M, M +1). The correct Riemann problem is the one whose
solution has u* = v = velocity of the solid boundary. It can be easily verified that
for this to happen the fictitious state M + 1 must be given by

Prsr = P> Ungrn = — Uy + 205 (83a)
To preserve second-order accuracy we also need
Prve = Pru-1> Unppe = — Uy 205 (83b)

(ii) Transmissive boundaries

There are cases in which one is only interested in the local behaviour of the
solution, or one may wish to simulate a boundary at infinity or a transmissive
boundary. This can be achieved by placing ‘transparent’ boundaries that allow
waves to pass through.

With reference to figure 10 one imposes

Prir1 = Pars Unger = UM:}
(84)

Prrre = Par—1, Ungrz = Upg—1-

Note that the solution of the Riemann problem RPM,M+1) is trivial. It is
important to realize that the boundary condition (84) does not impose zero gradient
of the solution at the boundary, which would be incorrect. But care is required with
this artificial boundary condition, for small spurious reflections may be caused.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
\
)

THE ROYAL A

A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Riemann problems and the war method 61

(f) Eatensions of the method

We describe two extensions of the war method so that the full two-dimensional
problem with source terms
U+F,+G,=80) (85)
can be solved.

(i) Treatment of source terms

Consider the one-dimensional inhomogeneous problem
U+F,=S8U). (86)

The source term S(U) can include [0, gph,]* as well as some other effects such as
Coriolis forces and bottom roughness.

We use time-operator splitting so that the problem (86) with initial data U™ is split
into two sub-problems. One proceeds as follows:

(a) Solve the homogeneous problem

U+F, =0

with data U" to obtain a provisional solution U"*! for the next time level.
(b) Solve the system of ordinary differential equations (ODESs)

U, = S8U)

by using as initial condition the provisional solution U"*! of the previous step. This
gives the final solution U"*! for the new time level n+ 1.

The choice of the numerical method for solving the obEs depends very much on the
character of the sources. For most problems a Runge-Kutta method is good enough,
although the simpler first-order Euler step

Urtt = Uptt 4 AtS(O7H)

is used very frequently. Here At is the time-step size given by the crL condition in
the homogeneous step (1). If the oDEs are a stiff system an implicit method must be
used.

The terms involving derivatives, such as A, can be approximated using central
differences, say. If A(x) is known at the intercell boundaries then a second-order
approximation at the cell centre would be %, & (h;1—h;_1)/Ax.

(i1) Treatment of a second dimension
Consider the two-dimensional problem

U+F,+G, =0

with data U". We use space-operator splitting whereby the problem is solved in two
sweeps.
x-sweep: solve
U+F,=0

with data U" to obtain a provisional solution U™z,

Note that this problem is an extended one-dimensional problem. See equation (1).
There is a third equation involving the ‘passive’ component of velocity w. The
extended Riemann-problem solution must be used.

Phil. Trans. R. Soc. Lond. A (1992)
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z-sweep : solve
G+G,=0

with initial data U"*:. The solution of this step is the final solution U"*! for the time
level n+ 1. The time step size At is chosen at the beginning of the splitting procedure
and it is common to both the x and z sweeps. If sources were present one would
require another step, as described previously.

There are more sophisticated combinations of the  and z sweeps that would ensure
formal second-order accuracy. See Strang (1968) for details.

(g) An algorithm for the one-dimensional case

We summarize the main steps involved in the implementation of waF as applied
to the homogeneous one-dimensional shallow water equations (5). Having specified
the domain length, the number of computing cells M and the grid size Az the
following operations are performed at every time step n:

(@) Solve the Riemann problem RP(i,i+4 1) and store (i) the wave speeds into
WS(1,4), WS(2,4); (ii) the ¢-jumps across each wave into W.J(1,¢), WJ(2,4); (iii) the
flux values in the star region into FS(1,7¢), FiS(2,1).

The fluxes may have to be computed from the star values ¢*, u* or they may be
directly available from the solution of the Riemann problem, as when using the HLL
approximation given by equation (61), for instance.

Here the loop runs from ¢ = —1 to M +1.

(b) Apply the cFL condition (81) to find At.

(c) For each i, i = 0 to M: (i) compute the local Courant numbers v, = WS(k, 7)
At/Ax, k = 1,2; (ii} compute the amplifiers 4, (using equation (77), say), k =1, 2;
(iii) modify Courant numbers, v, = 4, v,; (iv) compute the intercell fluxes according
to (76), say. Store values into FI(1,7), FI1(2,7).

(d) Advance to the next time level n+1 using the conservative formula (66).

4. Test problems

Three test problems are used to assess the performance of the war method using
the various Riemann solvers described in §3. Test problems 1 and 2 are one-
dimensional cases: for which the first one has known exact solution ; the second one
involves a source term due to a non-horizontal bed. Test problem 3 is a two-
dimensional time-dependent problem, whose exact solution is unknown to us. There
are, however, certain features of the solution which can be used to judge the
numerical results.

(@) Test 1

A one-dimensional domain of length 1.0 is chosen. We take M = 100 so that Ax =

0.01. The initial data is that for a dam-break problem

¢, =10, 0<x<4i,
P(x,0) =
L;SR =0.1, $<z<1.0,
and u(x,0) = 0 for all x in [0, 1]. The cFL condition is that given by equation (81).
This nonlinear cFL condition gives the maximum time-step size without wave
interaction within a cell.
The computed solution is evolved to time ¢ = 0.4 units. Figure 11 shows the exact
solution in full line for the flow variable ¢(x, t) and the particle speed u(x,t) together
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Figure 11. Numerical (symbol) and exact (line) solutions to test 1 at time ¢ = 0.4 units. The war
method with the exact Riemann solver and the Tvb function SUPERA is used to compute the
numerical solution.
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Figure 12. Numerical (symbol) and exact (line) solutions to test 1 at time ¢ = 0.4 units. The
Godunov method with the exact Riemann solver is used to compute the numerical solution.
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Figure 13. Numerical (symbol) and exact (line) solutions to test 1 at time ¢ = 0.4 units. The
Richtmyer—-Morton version of war with the exact Riemann solver is used to compute the numerical
solution.

with the numerical solution, shown in symbols. These results were obtained by the
WAF method with the exact Riemann solver and the amplifier sUPERA of equation
(77).

The numerical results of figure 12 were obtained by using the first-order Godunov’s
method together with the exact Riemann solver. The shock wave is reasonably well
resolved by four to five grid points. There are no oscillations behind the shock. The
rarefaction wave, however, is very poorly represented. The excessive numerical
diffusion inherent in this first-order accurate method is clearly manifested near
‘corners’, where the solution has a discontinuity in derivative. Also the entropy
problem of Godunov’s method can be seen around « = § in figure 12. This method is
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Figure 14. Numerical (symbol) and exact (line) solutions to test 1 at time ¢ = 0.4 units. The waF
method with the Ts-approximate Riemann solver and the TvD function SUPERA is used to compute
the numerical solution.
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Tigure 15. Numerical (symbol) and exact (line) solutions to test 1 at time ¢ = 0.4 units. The war
method with the Tr-approximate Riemann solver and the TvD function SUPERA is used to compute
the numerical solution.

theoretically entropy satisfying and thus the entropy glitch should vanish as the
mesh size vanishes. For finite grids, however, the glitch is visible although it is not
a serious problem.

Figure 13 shows the results obtained by the fully second-order method with 4, =
1. The accuracy in smooth parts of the flow is now better. Also, the discontinuities
are more sharply resolved, including the head and the tail of the rarefaction. The
entropy glitch is worse than that of Godunov’s method, as expected. The most
serious problem, however, is that of the spurious oscillations. The overall solution is
unacceptable.

Figures 14 to 16 show results using the war method with approximate Riemann
solvers; they are the two-shock (rs), the two-rarefaction (Tr) and the Roe-type
solver (RS2) respectively. These results are very good. The quality of the solution is
preserved even if approximate Riemann solvers are used. For this test problem the
results obtained by using the approximate Riemann solvers are, to plotting
accuracy, almost indistinguishable from those of the exact Riemann solver.

(b) Test 2

This test involves a one-dimensional channel 30 m long whose non-uniform bed
elevation b(x) (above a horizontal datum) is given by:

b(x) =0 if x€|0,10],
b(x) = 1.0 if wxe[20,30],
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 16. Numerical (symbol) and exact (line) solutions to test 1 at time ¢ = 0.4 units. The war
method with the RS2-approximate Riemann solver and the TvD function SUPERA is used to compute
the numerical solution.
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Figure 17. Numerical solution of Test 2 for the free surface 2+# and » at time ¢ = 1 s.
The exact Riemann solver and SUPERA are used.
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Figure 18. Numerical solution of Test 2 for A+# and « at time { = 2 s.

and b(x) varies linearly between 0 and 1 m for x¢[10, 20]. The resulting source term
is treated by the time-operator splitting method described in §3f.
The initial conditions are

[HL =4 m, z¢0,5],

H(z,0) =
\Hy=2m, ae5,30],

where H denotes the total elevation of the free surface.

Figures 17 to 19 show the computed results at times 1 s, 2 s and 4 s respectively.
The computations were performed on a grid of 400 cells.

The exact Riemann solver was applied. Figure 17 shows the right travelling bore

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 19. Numerical solution of Test 2 for A47 and u at time t = 4 s.

and the left depression that emerge from the break up of the initial discontinuity.
The boundary conditions on the left boundary are transmissive and thus the
rarefaction travels outside the computational domain. At the time shown the bore
has just passed the beginning of the bed elevation, the effect of which is seen mainly
in the particle velocity profile. Figure 18 shows, at t = 2 s, an appreciable effect of the
bed elevation on the particle velocity distribution. The free surface position is also
affected, as expected. Figure 19 shows the solution at ¢ = 4 8. Both the free surface
position and the particle velocity have recovered a distribution expected on a
horizontal bed.
(c) Test 3

This is a two-dimensional problem that simulates the collapse of a circular
dam. The computational domain is [0, 2]x[0,2] in the xz-horizontal planc. The
dam is centred at (1, 1) and its radius is 0.35. The initial conditions are wu(x,z,0) =
w(x,z,0) =0 and

1.0 if (x—1)24+(z—1)2<(0.35)%,
b(x,2,0) =
1 0.1 otherwise.

Figures 20 and 21 show the computed solution for ¢(x,z,t) at times t = 0.2 and t =
0.46 units respectively.

The leading circular bore is attenuated as time evolves as one would expect. The
mechanism that makes that possible is the depression wave overtaking the bore, i.c.
¢ decreases from the bore towards the centre up to the tail of the depression wave
running into the centre (1,1). These numerical results were obtained by using war
with the TR approximation.

5. Conclusions

Several Riemann solvers for the shallow-water equations have been presented.
These have been used locally in the weighted average flux method (war) to compute
the global solution to the general initial-boundary value problem for the unsteady,
two-dimensional shallow water equations. The algorithms are conservative and have
the ability to capture discontinuities with high resolution without the spurious
oscillations of traditional higher-order finite difference methods. This is illustrated by
the preliminary numerical results presented. The results so far suggest that for
applications in which the solution exhibits high gradients and nonlincar cffects are
important the war approach presented here can provide very accurate numerical
solutions.
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Figure 21
Figure 20
10+
.

Figure 20. Numerical solution for ¢ to Test 3 at time ¢ = 0.2 units. The waF method with the Tr-
approximate Riemann solver and the Tvb function SUPERA is used to compute the numerical
solution.

Figure 21. Numerical solution for ¢ to Test 3 at time ¢ = 0.46 units. The war method with the Tr-
approximate Riemann solver and the TvD function SUPERA is used to compute the numerical
solution.
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